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We present a model of polymer growth and diffusion with frustration mechanisms for density increase and
with diffusion rates of Arrhenius form with mass-dependent energy barriers ��m���m−1��. It shows nonuni-
versal logarithmic coarsening involving the exponent �. Strong-glass behavior is found in the typical times for
disappearance of all polymers up to a given length, without reference to the equilibrium states of the macro-
scopic system. These features are predicted by numerical simulations, scaling theories, and an analytic solution
of the master equation within an independent interval approximation, which also provides the cluster size
distribution.
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I. INTRODUCTION

One of the most remarkable features of glassy systems is
the rapid increase of the relaxation time � to equilibrium
states as the temperature T is lowered. In the most simple
glasses, called strong glasses, an Arrhenius behavior �
�exp�A /T� is observed, while in fragile glasses more com-
plex temperature dependences are found. This slow relax-
ation is expected to be accompanied by a slow growth of
correlated domains. Several microscopic models have al-
ready been proposed to represent such features �1,2�. For
instance, strong glass behavior was found in the spin-
facilitated models introduced by Fredrickson and Andersen
�3,4� and several glassy features were found in models with
kinetic constraints �5–8�, in which initial random systems
evolve to equilibrium states via the slow diffusion of def-
fects. On the other hand, fragile glass relaxation to equilib-
rium states with ��exp�B /T2� was recently shown in a spin
chain with asymmetric kinetic constraints �9,10�. The dy-
namic rules assumed during the nonequilibrium evolution of
these systems are derived from statistical equilibrium condi-
tions. For instance, in the spin-facilitated models, the final
concentration of defects is given by the canonical distribu-
tion exp�−E /T� at low temperatures and this is the origin of
the Arrhenius form of the relaxation time in those systems.

An alternative scenario for the onset of anomalous coars-
ening and glassy behavior is suggested in this paper with the
analysis of a polymer growth model in one dimension. The
slow dynamics in this model is a consequence of the inter-
play between slow activated �Arrhenius� diffusion of clusters
and frustration of density increase. Cluster diffusion occurs
in thermal contact with the surroundings, with energy barri-
ers increasing with cluster length. Density increase is repre-
sented by the deposition of new particles in the line, but it is
not allowed at small vacancies between the clusters. Thus the
dynamic rules of this model do not make any reference to
equilibrium macroscopic states and the physical motivation
of those processes contrasts with the somewhat artificial sto-

chastic rules of other simple models with similar dramatic
slowing.

The rules of the model, illustrated in Figs. 1�a� and 1�b�,
prescribe as follows the influence of polymer length on acti-
vated diffusion, the suppression of density increase, and the
irreversible polymer aggregation. A cluster �polymer� can
move one lattice spacing to the right or to the left with dif-
fusion rate given by r�exp�−� /T�, where the energy barrier
� increases with polymer length and T is the temperature
�Fig. 1�a��. We will assume that ���m−1��, where m is the
polymer length �mass� and ��0. Deposition of hard core
particles, which represents density increase, is allowed only
at sites with one empty nearest neighbor, with deposition rate
F=1 �Fig. 1�b��. Aggregation of a particle to a cluster and of
two clusters is irreversible and occurs upon any contact of
nearest neighbors. Thus, after a diffusion event, the most
typical situation is the formation of a larger cluster �Fig.
1�a��. This represents an ideal polymerization process, with
no energy barrier for the formation of a new bond between
neighboring particles and an infinite barrier for the reverse
process. The linear increase of � with m ��=1� would cor-

*Email address: reis@if.uff.br
†Email address: r.stinchcombe1@physics.ox.ac.uk

FIG. 1. �a� Diffusion of a polymer of length �mass� m, with the
corresponding rate r, and the two possible final configurations after
the polymer move. �b� Allowed deposition processes at vacancies
with a neighboring vacant site, with the corresponding rate, and the
forbidden deposition process, in which the vacancy has two occu-
pied neighbors.
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respond to polymers stretched along a surface, with � being
the sum of adsorption energies of all monomers. Although
not directly related to the present problem, it is also relevant
to recall that energy barriers with ��0.5 are found in de-
sorption of linear alkanes from graphite surfaces �11�. Con-
sequently, our numerical study will be concentrated in sys-
tems with ��1.

The restriction of the model to a low-dimensional struc-
ture helps to obtain the analytical and numerical solutions.
This is certainly a simplification for many systems, in which
the dimensionality may play an important role. However,
glassy behavior has been seen in several low-dimensional
systems, such as polymer films �12�, and the formation of
clusters of fast-moving particles with dimensions near or be-
low 2 was observed in colloidal glasses �13�. Consequently,
we believe that the qualitative scenario introduced here may
find applications to real systems.

Using scaling arguments and numerical methods, we will
show that the model presents nonuniversal logarithmic coars-
ening, in which the average cluster �polymer� length slowly
increases as �m	��T ln t�1/�, starting from an initial random
low-density configuration. The model also presents strong-
glass features of the characteristic times for eliminating
structures of a given length: after a time ��exp�d� /T�, all
clusters of sizes of order d or smaller will disappear. Conse-
quently, the anomalous coarsening and the Arrhenius-type
relaxation are observed during the nonequilibrium system
evolution, which involves frustration of density increase and
thermally activated diffusion at the microscopic level. We
will also solve the master equation of the process within an
independent interval approximation, using the same mapping
onto a column picture adopted in the study of related systems
in Refs. �14,15�. However, the treatment of cluster size dis-
tributions of the present model has novel and less trivial
aspects. It will confirm the above results and provide cluster
length distributions that remarkably differ from those related
systems and that, as far as we know, were not previously
obtained in other systems with logarithmic coarsening.

The rest of this paper is organized as follows. In Sec. II
we use scaling arguments to predict the logarithmic coarsen-
ing and the glassy behavior and confirm these results with
numerical simulations. In Sec. III we solve the master equa-
tion within an independent interval approximation, providing
the cluster length distributions. In Sec. IV we summarize our
results and conclusions.

II. SCALING OF CLUSTER LENGTH AND GLASSY
BEHAVIOR

Scaling arguments can be used to predict the slow coars-
ening of this model, following the same lines of Ref. �16�,
which were previously applied to magnetic systems �17,18�
and to related nonequilibrium models �14,15�. For simplicity,
we refer to the average cluster mass as m.

In Fig. 2�a�, we show a configuration with clusters of
lengths typically of order m, named A, B and C, with single
empty sites between them. The time necessary for cluster B
to move is of order �t=exp�m� /T�. If it moves to the left
�Fig. 2�b��, then clusters A and B coalesce. Since the diffu-

sion rates of clusters A+B and C are very small for large m,
while the deposition rate is F=1, a new particle will imme-
diately be deposited in one of the sites of the double vacancy
�Fig. 2�b��. One possible configuration after the deposition of
a new particle is shown in Fig. 2�c�. From the initial to the
final configuration �Fig. 2�a�–2�c��, the average cluster length
increase was of order m. Thus we obtain

dm

dt
�

�m

�t
�

m

exp�m�/T�
. �1�

We will be mainly interested in the long-time regime in
which cluster diffusion is sufficiently slow, even for small �.
In this case, the exponential factor at the right-hand side of
Eq. �1� is much larger than m, which may be neglected at
first approximation. Thus, integrating Eq. �1�, we are led to
the scaling of the average cluster length as

m � �T ln t�1/�. �2�

The leading correction due to the neglected term in Eq. �1� is
proportional to ln�ln t� / �ln t�1−1/�. However, it is not ex-
pected to be the true leading correction to the dominant scal-
ing of the model because Eq. �1� is itself an approximation,
which omitted further corrections.

Numerical simulations of this model confirm the logarith-
mic coarsening. In Fig. 3 we show the time evolution of the
average cluster length for three sets of values of � and T, in
which that scaling is observed in up to seven decades of
time. The data for �=1, with T=1 and T=2, are averages
over 3�104 different realizations in lattices of length L
=104. The data for �=0.5, in which much larger clusters
appear at small times, are averages over 200 realizations in
lattices with L=5�104, up to time t=105.

FIG. 2. Illustration of the coarsening dynamics for the construc-
tion of the scaling theory: �a� three typical neighboring clusters are
shown, with lengths of the order of the average cluster size m; �b�
cluster B moves to the left, forming a larger cluster after aggrega-
tion to cluster A, and a new particle is deposited at one of the sites
of the double vacancy between A+B and C; �c� the final configu-
ration after the deposition of a new particle at the left site of the
double vacancy.
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In Fig. 4 we show the data for the same values of T and �
scaled in the form �m	 / �T ln t�1/� versus 1/ ln t. As t→�

�1/ ln t→0�, Fig. 4 suggests an universal amplitude in the
scaling relation �2�, although corrections to the dominant
scaling clearly depend on � and T.

The logarithmic coarsening leads to a time evolution of
the density with a logarithmic correction, 	=1−1/ �T ln t�1/�.
This type of time dependence was also found in experiments
of compaction of granular systems �19� and theoretical mod-
els to describe them �20,21�, but temperature played no role
there.

Another remarkable feature of this system seen in simu-
lations is the absence of clusters whose reduced lengths

y � m/�T ln t�1/� �3�

are smaller than the most probable value y=a �a→const for
large t�. In order to understand this feature, consider a set of
clusters with reduced size y=a−
, with any 
�0, whose
diffusion rate is t�a − 
��

. This value is larger than the diffusion
rate of the clusters with y=a by a factor t
�/a. Thus, at large
t, compared to the most probable clusters, the clusters with
y=a−
 are much more mobile and are present in smaller
number in the line. So they will merge into the slower larger
neighboring clusters almost instantaneously within the typi-
cal time scale for diffusion of the most probable clusters
�length y=a�, which causes the removal of clusters with y
=a−
.

This is consistent with the simulation results shown in
Fig. 5, in which we plotted the reduced probability of cluster
length m, �T ln t�1/�P�m�, as a function of the reduced length

y, for �=1 �two temperatures in the main plot� and �=0.5 �in
the inset�. Below a certain value y=a�1, the corresponding
probabilities rapidly decrease to zero and the cluster size
distribution is asymptotically discontinuous at that point. A
discontinuity in the slope of the distribution at y�2a is also
suggested in Fig. 5 and will be rigorously justified in Sec. III.
Further slope discontinuities will be predicted, but they are
not so clear in Fig. 5 due to the larger fluctuations in the data
for large y.

From the above results, the characteristic time for clusters
of a given mass m to be completely eliminated from the
system is t=exp��m /a�� /T�. The connection of the glassy
behavior to the thermally activated diffusion of microscopic
structures is clear, in contrast to other kinetically constrained
models whose dynamic rules are determined by the statistical
equilibrium of the system.

III. ANALYTICAL SOLUTION

Now we turn to the analysis of the model starting from a
version of the master equation, following the same lines as in
the solution of related models in Refs. �14,15�.

In our original problem, each site on the line is occupied
by one or zero particles, but we are interested in the evolu-
tion of cluster length. Thus, the analysis of a master equation
is more easily set up by reformulating the process using a
column picture, in which a column of height m represents a
cluster of size m together with its adjacent vacancy on the
right. This mapping is illustrated in Fig. 6.

Figure 6 clearly shows that the lattice length L0 in the
column picture is smaller than the length L in the original
problem �particle picture�: L0=L−M, where M is the total
mass, for periodic boundaries. As time increases and new
particles are deposited, L0 decreases. However, new particles
are deposited only at double vacancies of the particle picture
�Fig. 1�b�� and the latter correspond to single vacancies in
the column picture �Fig. 6�. Thus, the decrease of L0 �or mass
increase� is related to the probability Pt�0� of an empty site

FIG. 3. �Color online� �m	� versus log�t� for: �=1 and T=1
�squares�; �=1 and T=2 �triangles�; �=0.5 and T=1 �crosses�.

FIG. 4. �Color online� Scaled average cluster size as a function
of inverse of ln t for �=1 and T=1 �squares�; �=1 and T=2 �tri-
angles�; �=0.5 and T=1 �crosses�.

FIG. 5. �Color online� Scaled probability of clusters of length
�mass� m as a function of the scaled length y for �=1, with T=1
�solid curve� and T=2 �squares�, at t=108. The inset shows the
same quantities for �=0.5 and T=1, at t=107 �not shown in the
main plot to avoid superposition of many data points�.
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in the column problem as �L0�t+1�−L0�t�� /L0�t�=−Pt�0��2
− Pt�0��.

The probability Pt�m� that a randomly chosen cluster in
the column picture has size m at time t is given in terms of
the clusters numbers, N�m , t�, by Pt�m�=N�m , t� /L0�t�. The
gain/loss from in/out processes provides a master equation
for clusters numbers as

N�m,t + 1� − N�m,t� = L0�Bm + Em� , �4�

where Bm comes from the deposition processes and Em
comes from diffusion of clusters or isolated particles. It can
be rewritten in terms of cluster length probabilities as

�1 − Pt�0��2Pt+1�m� − Pt�m� = Bm + Em, �5�

which allows for the changes in L0.
In an independent interval approximation �IIA� in which

joint probabilities are factorized, the contribution from depo-
sition is given by

Bm = Pt�0��2��m − 2�Pt�m − 1� − 2��m − 1�Pt�m� + �m,1Pt�0�

− 2�m,0� . �6�

Here, the factor Pt�0� accounts for the fact that deposition is
allowed only at single vacancies in the column picture �Fig.
6�. The first term inside brackets gives the rate of production
of clusters of size m from deposition at one of the sides of a
cluster of size m−1, for m2, while the third term gives the
rate of production of a cluster with m=1 in a double vacancy
�triple vacancy in the particle picture, with the new particle
being deposited at the central site�. The second term corre-
sponds to the loss of a cluster of mass m due to deposition at
one of its sides and the last term the loss of vacancies due to
deposition at one of the two corresponding sites in the par-
ticle picture.

The contribution from diffusion in Eq. �5� is given by

Em = 

r=1

m

f�r�Pt�r�Pt�m − r� + �m,0

r=1

�

f�r�Pt�r�

− ��m − 1�f�m�Pt�m� − Pt�m�

r=1

�

f�r�Pt�r� . �7�

In Eq. �7�, the function f�m��exp�−�m−1�� /T� gives the
diffusion rate for a cluster of mass m. The first term in Eq.

�7� gives the rate of production of a cluster of mass m due to
the coalescence of smaller clusters after diffusion of one of
them. The second term corresponds to the creation of a
single vacancy �double vacancy in the particle picture� due to
cluster diffusion—see Fig. 1�a�. The loss terms correspond to
coalescence of a cluster of mass m and a neighboring cluster:
the third one accounts for diffusion of the cluster of mass m
and the fourth one accounts for diffusion of the neighboring
clusters.

In the scaling limit of large t and large m �coarsening�, the
probability Pt�m� must have the form

Pt�m� =
1

L�t�
g�y�, y �

m

L�t�
, �8�

with some function L�t� characterizing the growing typical
cluster size.

Figures 2�a�–2�c� show that the survival time of a double
vacancy is of order 1 /F=1, while a typical cluster move
occurs on a much larger timescale, of order exp�m� /T�. Con-
sequently, the onset of a double vacancy �in the particle pic-
ture� is a rare event. Nevertheless, since the double vacancy
mediates deposition, its probability is required in the equa-
tion for the one-variable scaling function g, and the same
scaling arguments of Sec. II lead to the expected scaling of
the double vacancy probability in the particle picture as
Pt�0�= �C /2� / t �see, e.g., Ref. �15��.

Thus we obtain an equation for the scaling function as

−
L�

L
�g + y

dg

dy
� −

Cg

t
= −

C��y�
t

− h�y� − g�y�I���

+ ��y�I��� + 
0

y

dy�g�y − y��h�y�� ,

�9�

where h�y�=g�y�exp�−�Ly�� /T� and I���=�0
�dy�g�y��

�exp�−�Ly��� /T�. The first term on the left-hand side �LHS�
of Eq. �9� follows from those in Eq. �5� in the long time,
continuous limit. The second term on the LHS and the first
one on the right-hand side �RHS� correspond to deposition
�Eq. �6�� and the other terms on the RHS correspond to clus-
ter diffusion �Eq. �7��.

Equation �9� and the correponding equation for the gen-
erating function contrast to those of the models of Refs.
�14,15� because a simple power counting in Eq. �9� is not
enough to provide the scaling of the average cluster size
here. From the structure of Eq. �9� and the forms of h�y� and
I���, we expect that the balance of dominant terms will be
possible if

L�

L
= exp†− �L�t�a��/T‡�„L�t�… , �10�

where a is some constant �see below� and the function �
accounts for possible power-law subdominant factors. Notice
also that the dominant factors of Eq. �10� are the same as
those of Eq. �1�, obtained from simple scaling arguments.

FIG. 6. Example of particle-hole configuration on a line �a� and
the map �dashed arrows� into a column problem �b�. Each cluster
and the vacancy at its right side in �a� correspond to a column in �b�
with the same mass.
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As t→�, we expect L�t�→�, but the last term in the
RHS of Eq. �9� will provide a divergent contribution for y�
�a. This contribution is not balanced out by other terms
unless g�y�=0 for y�a. With this assumption, we obtain a

dominant term on the LHS of Eq. �9� with a factor e−�La��/T

and, in the integral at the RHS, a factor e−�Ly���/T, which
provides a dominant cancelling term for ya.

The solution of Eq. �10� is exactly the logarithmic growth
of L�t� obtained from scaling arguments �Eq. �2��, thus pro-
viding the expected scaling of average cluster length. The
above assumption for the function g confirms, within the IIA,
the elimination of all clusters with masses smaller than
aL�t���T ln t�1/�.

The scaling function has the form

g�y� = ��y − a�g1�y� , �11�

which leads to an equation for the function g1�y� as

g1 + y
dg1

dy
+ Cg1 − C��y� =

ag1�a�
k

�g1��y − a� − g1�y − a���y

− 2a� + ��y − a� − ��y�� , �12�

where k is constant. Consequently, a discontinuity in the
slope of g�y� is obtained at y=2a. Subsequently, further dis-
continuities appear at y=3a, y=4a and so on. The function g
can be shown to be continuous except at y=a, where the
discontinuity implies k=1 in Eq. �12�. These findings agree
with those in Fig. 5, in which the probabilities of cluster
lengths with y�a�1 tend to zero asymptotically and the
slope of the scaled probability clearly changes at y�2a.

From Eq. �12� we obtain the distribution for a�x�2a as

g�y� = Ay�ag�a�−�C+1��, �13�

where A is a constant. In Fig. 7 we show ln P�m� versus ln y
for �=1 and T=1, at time t=108, with a linear fit that con-
firms the power-law decay predicted in Eq. �13�. Notice that,
although the scaling arguments of Sec. II were capable of
predicting several features of the model, the analytical solu-
tion of the master equation, even within the IIA, is essential

to predict the shape of the scaled cluster size distribution.
For 2a�y�3a, the distribution is g�y�=By�ag�a�−�C+1��

−A�y−a��ag�a�−�C+1��, but the low accuracy of our data in that
region does not allow a reliable test of this form.

IV. CONCLUSION

We presented a one-dimensional model of polymer
growth and diffusion with frustration mechanisms for density
increase and with diffusion rates of Arrhenius form, with
mass-dependent energy barriers. The nonuniversal logarith-
mic coarsening involves the exponent � and can be predicted
by scaling arguments. The model also shows strong glass
behavior of the characteristic times for elimination of all
polymers up to a given length. These features are confirmed
by the solution of the master equation within an independent
interval approximation �IIA�. This solution also provides the
distribution of cluster sizes, which shows discontinuities at a
sequence of points and a power-law decay for sizes near the
most probable one. These findings are confirmed by numeri-
cal simulations with good accuracy.

The logarithmic coarsening and Arrhenius-type behavior
were also obtained in other systems, but our model presented
a different scenario for the onset of these properties, in which
there is no reference to equilibrium states. Instead, all these
features are obtained during the nonequilibrium system evo-
lution assuming a thermal contact between the clusters and
their surroundings at a temperature T, but not an approach to
an equilibrium macroscopic state with that temperature.

The elimination of clusters with lengths below a certain
threshold is also present in the paste-all model of Derrida et
al. �22�, although that is a direct consequence of the model
prescription, namely the elimination of the smallest cluster of
the system at any time. Instead, in the present model that
elimination is obtained only in the scaling limit �long times,
large clusters�, in which diffusion coefficients of small clus-
ters become infinitely larger than those of large clusters. The
same type of distribution appears in the East model �9,10�, in
which the rules for spin flips are asymmetric �an artificial but
essential ingredient for obtaining slow dynamics there�. On
the other hand, a power-law coarsening and fragile glass be-
havior are obtained in the East model, which contrasts to our
findings.

The successful application of the IIA for the present prob-
lem and for previous models with particle detachment from
clusters �14,15� also deserves some comments. In these mod-
els, the coarsening arises from coalescence of clusters and
the reverse process is increasingly improbable �altogether
improbable in the present case�. Since the initial state is
without cluster-cluster correlations, no correlations between
the masses or lengths of neighboring clusters can build up, so
the IIA becomes exact in the late coarsening limit. This in-
terpretation is corroborated by the successful comparison of
IIA predictions and simulation results. It seems that IIA fails
only when we focus on rare processes which occur in narrow
time windows in which the system is dominated by revers-
ible and highly correlated processes �15�, which is not the
case in the present model.

FIG. 7. �Color online� ln�P�m�� versus ln�y� for �=1 and T=1,
at t=108, and a linear fit of the data in the region 1.4�y�2.2.
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